
www.manaraa.com

(=? </-

NPS CS-92-014

NAVAL POSTGRADUATE SCHOOL
Monterey, California

A MODEL FOR MERGING SOFTWARE
PROTOTYPES

David A. Dampier
Luqi

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School

Monterey, California 93943

FedDocs
D 208.14/2
NPS-CS-92-014

www.manaraa.com

NAVAL POSTGRADUATE SCHOOL
Monterey, California

m HARRISON SHULL
REAR ADMIRAL R. W. WEST JR. Provost

Superintendent

This report was prepared for and funded by the Naval Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by:

www.manaraa.com

UNCLASSIFIED
CLASSIFICATION OF THIS PAGE

ORT SECURITY CLASSIFICATION

REPORT DOCUMENTATION PAGE
UNCLASSIFIED '

lb ^IWICIIVE MARKING

URITV CLASSIFICATION AUTHORI TY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;

distribution is unlimited
LASS inCATION/DOWNGRADING SCHEDULE

ORMING ORGANISATION REPORT NUMBER(S)

:S-92-014

5. MONITORING OR6ANI2ATION REPORT NUMBER(S)

7a. NAME OF MONITORING ORGANIZATION!E"SP
uter

ERF0RM1WG 0RGANi2aTi0N
cience ept.

Postgraduate School

eb.OFFiCEsYMBOL
(if applicable)

CS(52)

OiRESS (City, State, and ZIP Code)

;rey, CA 93943

7b. ADDRESS (City, State, and ZIP Code)

6. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

OM&N Direct Funding

dE OF FUNDING/SPONSORING
iANIZATION

Postgraduate School

6b. OFFICE SYMBOL
(if applicable)

16 50UP.C E OF FUND ING NUMB ERSJRESS (City, State, and ZIP Code)

terey, CA 93943

PROGRAM
ELEMENT NO.

PROJECT
NO.

TEsTr
NO.

WORkUNiT
ACCESSION NO.

_E (Include SecurityClassificationJ

)DEL FOR MERGING SOFTWARE PROTOTYPES

ir?M», LUQI
PE OF REPORT
If

lib. TIME COVERED
FROM TO

1§. PAGE COUNT
16uca.

ELEMENTARY NOTATION

14. DATE OF REPORT (Year, Month, Day)

92/09/23

COSATI CODES

GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

SOFTWARE, AUTOMATION, COMPUTER AIDED PROTOTYPING,
MAINTENANCE, FORMAL MODELS, SOFTWARE ENGINEERING,
SOFTWARE MERGING, CHANGE INTEGRATION, CASE TOOLS

TRACT (Continue on reverse if necessary and identify by block number)

As software becomes more complex, more sophisticated development and maintenance methods are needed

;ure software quality. Computer Aided Prototyping achieves this via quickly built and iteratively updated

ypes of the intended system. This process requires automated support for keeping track of many independent

es and for exploring different combinations of alternative changes and refinements. This paper formalizes the

',/change merging process and extends the idea to multiple changes to the same base prototype. Applications of

chnology include: automatic updating of different versions of existing software with changes made to the

le version of the system; integrating changes made by different design teams during development; and checking

tency after integration of seemingly disjoint changes to the same software system.

HlB'U I ION/AVAILABILITY OF ABSTRAC1
CLASSIFIED/UNLIMITED Q SAME AS RPT.

|lfc OF RESPONSIBLE INDIVIDUAL

fj DTIC USERS
21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED
22b. TELEPHONE (Include Area Code)
(408)646-2912

22cyOFFICE SYMBOL

I 1473, 84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

www.manaraa.com

A MODEL FOR MERGING SOFTWARE PROTOTYPES

David A. Dampier

Luqi

Computer Science Department

Naval Postgraduate School

Monterey, California 93943

e-mail: dampier@cs.nps.navy.mil

or luqi@cs.nps.navy.mil

ABSTRACT
As software becomes more complex, more sophisticated development and maintenance

methods are needed to ensure software quality. Computer Aided Prototyping achieves this via

quickly built and iteratively updated prototypes of the intended system. This process requires

automated support for keeping track of many independent changes and for exploring different

combinations of alternative changes and refinements. This paper formalizes the update/change

merging process and extends the idea to multiple changes to the same base prototype. Applications

of this technology include: automatic updating of different versions of existing software with

changes made to the baseline version of the system; integrating changes made by different design

teams during development; and checking consistency after integration of seemingly disjoint

changes to the same software system.

KEYWORDS
SOFTWARE, AUTOMATION, COMPUTER AIDED PROTOTYPING, MAINTENANCE,
FORMAL MODELS, SOFTWARE ENGINEERING, SOFTWARE MERGING, CHANGE
INTEGRATION, CASE TOOLS

I. INTRODUCTION
Software development is an ever-increasing and complex industry. As software systems

gain sophistication and maintaining them becomes more difficult, automated software

development methods and the supporting formal models must be devised to increase reliability and

decrease post-development maintenance effort.

Computer Aided Prototyping is one such method to reduce maintenance costs by making

the original requirements conform more closely to the real needs of the users. Systems correctly

This research was supported in part by the National Science houndanon under grant number L'L'K-

9058453 and in part by the Army Research Office under grant number ARO-145-91.

www.manaraa.com

implementing an accurate set of requirements have lower maintenance costs because there are

fewer surprises when the system is put into actual use. An appreciable part of the maintenance

activity can be carried out by changing/updating the prototype rather than repeatedly updating the

production version of the intended system. This is useful because the prototype description can be

significantly simpler than the production code if the prototype is expressed in a notation tailored to

support modifications, and the software tools in the computer aided prototyping environment can

help carry out the required modifications rapidly [Lu 89]. Prototyping a software system using

tools decreases development time and increases maintainability, because it reduces customer

dissatisfaction with the delivered system [Lu 92].

The designers construct/change prototypes of the intended systems quickly to meet the

customer's desires during the requirements analysis phase. The designers need automated tools

which will allow several changes to a base version of a software prototype to be automatically

combined as well as automatically propagated through multiple alternative versions of the

prototype. Formal models are the keys and foundations for building such automated tools.

Change merging is the process of automatically combining the effects of several changes

to a software system. Change merging has been studied in the context of software maintenance and

conventional methods for software development. Early version control systems such as SCCS

[Si92] and RCS [Ti 82] provide primitive change merging facilities based on string editing

operations on the source text, without considering the effects on program behavior. However

automated tools must provide guarantees regarding program behavior to be trusted by designers.

Semantically-based change merging seeks to construct a program whose behavior agrees with the

changed version in all situations where the behavior of a changed version differs from the behavior

of the base version. The behavior of the constructed program should agree with the base version

www.manaraa.com

for all situations where the behaviors of all the changed versions agree with the behavior of the

base. The problem for functional programs was considered in [Be 86]. Semantically-based change

merging based on program slicing [We 84] and data flow analysis has been studied for imperative

while-programs [Re 88, Ho 90]. A general theory of change merging that can apply to any kind of

programming language is described in [Be 91a], along with a high resolution approach to change

merging for while-programs based on specifications and meaning functions [Li 79]. An initial

exploration of change merging models for the prototyping language PSDL can be found in [Da 90].

Change merging is an important aspect of computer-aided prototyping because the

prototyping process is characterized by rapid and extensive changes. The Computer Aided

Prototyping System (CAPS) [Lu 89] is a computer aided prototyping environment comprised of a

software database system, an execution support system, and a user interface that helps designers to

develop prototypes. The software database system manages changes to multiple versions of

prototype designs and provides an expert system to select and retrieve reusable components from

the software base. The design database provides concurrency control functions which allow

multiple designers to update the parts of the prototype without risk of unintentional interference.

In the interests of minimizing delay, the design database will not lock out access to any part of the

design, even while the design is being updated. Instead, the system will allow the previous version

of the component to be examined and updated. Such a parallel update will split off a new branch

or variation in the version history [Lu 90]. The system will provide a warning that a new version

is currently in preparation and information about the reason the component is being modified (i.e.

some particular new or modified requirement) on request. The methods proposed in this paper

provide automated support for combining both branches of a split resulting from parallel updates

to produce a version that incorporates the effects of both of the updates.

www.manaraa.com

Our goal is to develop a tool for the CAPS system which will support automatic merging

of different versions of a prototype. We have developed a model which shows that it is possible to

correctly perform a merge operation in most cases [Da 90]. This paper formalizes the change

process for the Prototyping System Design Language (PSDL), a design based language written

specifically for CAPS, and uses this formalization to strengthen our merging model.

II. PROTOTYPING IN CAPS
Computer aided prototyping allows the user to get a better handle on his/her requirements

early in the conceptual design phase of development and use automated tools to rapidly create "a

concrete executable model of selected aspects of a proposed system" [Lu 89], to allow the user to

view the model, and to make comments early. The prototype is then rapidly reworked and re-

demonstrated to the user over several iterations until the designer and the user have a precise view

of what the system should do. This process produces a validated set of requirements which become

the basis for implementing the final product [Lu 89]. The prototype can also become part of the

final product. In some prototyping methodologies, the prototype is an executable shell of the final

system, containing only a subset of the system's ultimate functionality. After the prototype is

approved by the customer, the holes are filled in and the system is delivered. In this approach to

computer aided prototyping, software systems can be delivered incrementally as parts of the

system become fully operational [Lu 89].

CAPS, a computer-aided software development environment, supports prototyping of

embedded hard real-time systems [Lu 89]. CAPS reduces the effort of the prototype designer by

providing an integrated set of tools that help design, translate and execute the prototypes, along

with a language in which to design and program the prototypes.

www.manaraa.com

The Prototype System Description Language (PSDL) is the prototyping language

associated with CAPS [Lu 88]. It was created to provide the designer with a simple way to

abstractly specify software systems. A PSDL program is a set of PSDL operators and data types,

containing zero or more of each. PSDL operators and types consist of a specification and an

implementation. The specification defines the external interfaces of each operator through a series

of interface declarations, provides timing constraints, and describes the functionality of the

operator through the use of formal and informal descriptions. The implementation can either be in

PSDL or Ada. PSDL implementations are data flow diagrams augmented with a set of data stream

definitions and a set of control and timing constraints.

in. CHANGING PROTOTYPES
A current focus of CAPS is formalization of the change process. In order to discuss the

merging of changes made to a prototype, we must first provide a mathematical model of the change

process.

PSDL prototypes can be considered iterative versions of a software system. If S is the

intended final version of the software system, then each successive iteration of the prototype can

be viewed as an element of a sequence S\ where lim 5: = S. Each prototype S\ is modelled as a
i->» '

graph Gj = (Vj, E x
, Cj), where:

A. Vj is a set of vertices. Each vertex can be an atomic operator or a composite operator

modelled as another graph.

B. E\ is a set of data streams. Each edge is labelled with the associated variable name.

There can be more than one edge between two vertices. There can also be edges from an

operator to itself, representing state variable data streams.

C. Cj is a set of timing and control constraints imposed on the operators in version i of

the prototype.

www.manaraa.com

The prototype designer repeatedly demonstrates versions of the prototype to users, and

designs the next version based on user comments. The change from the graph representing the ith

version of the prototype to the graph representing the (i+l)st version can be described in terms of

graph operations by the following equations:

Si + 1 = (^i + 1» E\ + 1» C\ + 1) = ^i + ASj

ASi = (VAU VRV EAy ERV CAV CR X) where:

Vj + 1 - Vj = VA-
X

: The set of vertices to be added to S
x
.

V-
x
- Vj + i

= VR-
X

: The set of vertices to be removed from S-
x
.

E\ + 1 ' E't = EA['. The set of edges to be added to Sv

E
x
- E

x + i
= ER

t
: The set of edges to be removed from Sv

C-
l + i~ Cj = CA-{. The set of timing and control constraints to be added to S-v

C\ - C\ + 1 = CR\: The set of timing and control constraints to be removed from Sv

The + operation above is defined as follows:

Vi + 1 -V|UVA f
-Vfl,

E
i + 1

= E
[
vEA

C
i + 1 ^C{

uCA

-ER

-CR

The following figures show an example of a change made to a composite operator in PSDL.

Figure 1 contains a graph representation for a composite operator Opl consisting of 4 vertices and

6 data streams. Figure 2 shows a change to be applied to Opl to produce Op2. Figure 3 shows a

graph representation of Op2, the result of applying the change to Opl.

www.manaraa.com

100

X2 t

xi /T^\ x6 X1 ncCs
»(opi) » —KAK

f®-sX4
X6

^^ X3%
Key

/X5

oPi = (v1,E1,r1,c1)

V1
= {A,B,C,D}

Ej = {(XI: EXT->A), (X2: A->B), (X3: A->C), (X4: B->D), (X5: C->D),

(X6: D->EXT)}

Cj = {max_exec_time(B,100ms)}

Figure 1. Example of a composite operator in PSDL

AAOpl = {VRA> VAA> EAA , ERA, TAA, TRA, CAA , CRA}

VAA = {E}

VRA = {Q
EAA = {(X3: A->E), (X7: E->D)}

ERA = {(X3: A->C), (X5: C->D)}

CAA = {Iatency(X7, E, D, 50ms)}

C7?A = {>

Figure 2. Example of a change made to Opl.

www.manaraa.com

100

X2y®J\X4
XI

KaXT
X3

xg
VX7

X6

Operator Op2 = Opl + AAOpl

Op2 = {V2,£2,7 2,C2}

v2 = v
1
uvaa -v/?a = {A,B, C, D}U{ E}-{C} == {A, B, D,E}

E2 = £j u£AA -ErtA =

{(X1:EXT->A),(X2:A- >B), (X3: A-:>C), (X4: B->D), (X5: C >D), (X6: D-:>EXT)} U

{(X3: A->E), (X7: E >D)} - {(X3: A->C), (X5: C->D)} =

{(X1:EXT->A),(X2: A- >B), (X3: A-:>E), (X4: B->D), (X7: E->D), (X6: Do•EXT)}

c2 = {max_exec_time(B,100ms), latency(X7, E, D, 50ms)}

Figure 3. Example of the changed operator Op2.

IV. MERGING PSDL PROTOTYPES
Merging different versions of a program is useful in performing automatic maintenance of

software systems. In prototyping, it is common for different versions to evolve from the base

system. If the system designer discovers a fault in the base version of the system, it would be

desirable to have the capability to automatically apply that change to all of the versions currently

in use. In order to do this, the merging process must be able to apply the change to the common

parts of each version without affecting the peculiar functionality in each one.

In [Be 90], a definition of merging two compatible extensions of a semantic function was

given as follows:

www.manaraa.com

If the functionality of the software systems are represented using sets, then the

result of merging two extensions, A & C of a base version B is defined as:

M = A[B]C = (A - B) U (A n C) U (C - B)

In this definition, the union, intersection and difference operations are defined as normal

operations on sets. The difference operation, (A - B) for example, yields the functionality present

in the extension, but not inherited from the base version. The intersection operation yields the

functionality preserved from the base version in both extensions. This model preserves all changes

made to the base version, whether extensions or retractions.

In this section, we express our method for merging prototypes using the change model

described in the previous section and the above definition. All PSDL implementations are graphs,

which model their functionality. We have represented these graphs using sets. Different variations

of a prototype are the result of different changes being applied to a common base version. We can

merge the two new versions A and C together by applying the change which produced A from B

to version C, or applying the change which produced C from B to version A. The result is the same

in either case.

Earlier, we defined the (i + l)st iteration of a software prototype as 5j + j = Sj + A5j. Let

us now look at an ith version which has been changed in two different ways, via A. and A„. The

result of these two changes is 5A and 5B respectively. Now let us define the (i + l)st iteration as

Si + l=SA[Si]SB = (SA" 5
i)
U

(
SA n5B> U (SB~ S

The components of Sj + j; V\ + *E\ + \ and C\ + \ can be defined similarly:

v
i + i

= vA[Vi]vB = (vA -v.) u (vA nvB) u (vB -v.),

E
i + 1

=EA[Ei\EB = (EA -E{
) U (£A H£B) U (EB -E {

) and

Cui = cA[Ci]CB = (CA -Cj) u (cA ncB) u (cB -c {
)

www.manaraa.com

To demonstrate the concept of the merging operation, we provide the following example:

The base prototype is as in Figure 1 . Change A is outlined in Figure 2, with the result shown in

Figure 3. Change B is outlined in Figures 4 and 5. The merging operation is performed in Figure 6

and the result is shown in Figure 7.

The affect of change A is to remove the operator C and replace it with operator E.

Accordingly, the associated data streams must also be changed. The new data stream X7 also has

a latency associated with it, so a new timing constraint is added. The sets, VA, EA and CA

correspond directly to V2, E2 and C2 shown in Fig. 3.

ABOpl

=

{VRB , VA B,EAB , ERB , CA B ,
CRB }

VAB == {F}

VRB := {B}

EAB --= {(X2 A-:>F), (X8 F- >D)}

ERB -.= {(X2 A-:>B), (X4 B->D)}

CAB --= {max exec time(F,50ms)}

CRB --
= {}

Figure 4. Change B applied to Opl.

10

www.manaraa.com

50

X2^(F/\X8
XI (a)S s@^

X3\c \/x5

Operator OpB = Opl + ABOpl

OpB-{Vb^B^B,cB}

vB = VjUV^b -VRB = {A, B, C,D} U { F} - {B} ={A,C,D,F}

EB = E
1
U EAB --ERB = {(XI EXT->A), (X2 Ao B), (X3 A->C), (X4 B->D), (X5 C->D),

(X6 D->EXT)} U {(X2 A->F), (X8 F->D)} - {(X2 A->B), (X6 B->D)} =

{(XI EXT->A), (X2 A->F), (X3 A-><C), (X8 F-5 D), (X5 C->D), (X6 D->EXT)}

CB =: Cj UCAg -CRB = {max_exec time(F,50ms), latency(X7, E, D, 50ms)}

Figure 5. Results of applying change B to Opl.

The affect of change B is to remove the operator B and replace it with operator F. The data

streams associated with these two operators also have to be changed now. A new timing constraint

is also added associated with operator F.

The merge operation outlined in Figure 6 involves determining the real affect of changes

made to the base, and any conflict that may arise due to similar changes between the two variations.

This is a simple example illustrating the merging of two changed prototypes which do not

conflict with one another. In some cases, two changes to a prototype can conflict with one another,

and the result of their merging can be an inconsistent program. In such cases, the engineer must

resolve the conflict off-line. The following section describes some possible conflicts and possible

methods for resolving those conflicts.

11

www.manaraa.com

Op2-= OpA[Opl)OpB = (OpA -Opl) i^ (OpA r\OpB) u (0/7* -Opl) =

v2 = VA[V1]VB =
= (*V-V{) u (vA nvB) ^(^B -*l).

E2 'EA[E{SPB 'S

(*A"-^i) u (^A nEB) u(£B -*i> and

c2 - CA[Ci]CB =>«v-q) u (cA ncB) U(CB -q)

Figure 6. Performing the merge operation.

50

X2 ;/F }\X8
^u(? ^ X6

X3\
<e)

/X7

Figure 7. Result of the merge operation.

V. Conflict Resolution

There are a number of possible conflicts which can arise during the performance of the

merging operation. Conflicts arise when different changes applied to the prototype affect the same

portion of the prototype in different ways. Some examples of conflicts are as follows:

1. If one change adds an output edge to a vertex A, while another change removes vertex

A from the prototype. In this case, automatic resolution of the conflict is not yet possible, so the

system would have to notify the designer that a conflict has occurred and give him/her the

opportunity to resolve it.

2. If the two changes assigned different timing constraint values to the same operator, i.e.,

(max_exec_time, F, 50ms) and (max_exec_time, F, 40ms). In this case, the conflict can be handled

12

www.manaraa.com

automatically, since any operator which executes in under 40ms would certainly execute in under

50ms. In situations where different maximum execution times have been assigned, the minimum

value can always be chosen. This is also true of two different values for latency, maximum

response time and finish within timing constraints. The minimum calling period timing constraint

would have to be merged using the maximum of the different values. Different period values for

the same operator in different changes would result in a conflict which would have to be resolved

by the designer. Different control constraints for the same part of the prototype in different changes

can also result in a conflict. Some of these conflicts can be resolved automatically. Current work

is addressing methods for automatic resolution of conflicts.

VI. Conclusions

Tool support for manipulating and combining specifications is especially important for

computer aided prototyping. We are currently implementing the method presented here to evaluate

its effectiveness in practical contexts. We are also conducting theoretical studies to evaluate its

limitations and to discover improvements. The method described here works correctly whenever

the functions computed by the operators are one to one. As has been pointed out in [Be 90], a global

analysis of the system may be necessary to ensure that the functions computed by the operators do

not interfere in the general case. For a more detailed discussion of the reasons for this, see [Be 90].

Related work on configuration management and version control is also being performed [Ba 92].

Some issues to be considered in future work are treatment of data types and component

specifications, and the detection/diagnosis of semantic interference between modifications.

13

www.manaraa.com

LIST OF REFERENCES

[Ba 92] Badr, S. and Berzins, V., "A Design Management and Job Assignment System",

Technical Report, CS, NPS, 1992.

[Be 86] Berzins, V., "On Merging Software Extensions", Acta Informatica, Springer-

Verlag, 1986.

[Be 90] Berzins, V. "Software Merge: Semantics of Combining Changes to Programs",

Submitted for publication in ACM Transactions on Programming Languages and

Systems, 1990.

[Be 91a] Berzins, V. "Software Merge: Models and Methods for Combining Changes to

Programs", Journal of Systems Integration, vol. 1, no. 2, August 1991, pp. 121-141.

[Be 91b] Berzins, V. and Luqi, SOFTWARE ENGINEERING WITH ABSTRACTIONS,
Addison-Wesley, Reading, MA, 1991.

[Be 92] Berzins, V., Luqi, Yehudai, A., "Using Transformations in Specification-Based

Prototyping", IEEE Transactions on Software Engineering, August, 1992.

[Da 90] DampierJ)., A Model for Merging Different Versions of a PSDL Program, Master's

Thesis, Naval Postgraduate School, Monterey, California, June 1990.

[Ho 88] Horwitz, S., Prins, J., and Reps, T., "Integrating Non- Interfering Versions of

Programs", Conference Record of the Fifteenth ACM Symposium on Principles of

Programming Languages, Association for Computing Machinery, New York, New
York, 13- 15 January 1988.

[Ho 90] Horwitz, S., Reps, T. and Binkley, D., Interprocedural Slicing Using Dependence

Graphs", ACM Transactions on Programming Languages and Systems, January

1990.

[Lu 88]. Luqi, Berzins, V., and Yeh, R., "A Prototyping Language for Real Time Software",

IEEE Transactions on Software Engineering, pp.1409-1423, October 1988.

[Lu 89] Luqi, "Software Evolution Through Rapid Prototyping", IEEE Computer, May
1989.

[Lu 90] Luqi, "A Graph Model for Software Evolution", IEEE Transaction on Software

Engineering. Vol. 16. NO. 8. Aug. 1990

[Lu 92] Luqi, "Computer-Aided Prototyping for a Command-And-Control System Using

CAPS", IEEE Software, Jan. 1992.

14

www.manaraa.com

[Li 79] Linger, R., Mill, H., Witt, B., STRUCTURED PROGRAMMING: THEORY AND
PRACTICE, Addison-Wesley, Reading, MA, 1979.

[Re 88] Reps, T. and Yang, W., "The Semantics of Program Slicing", Computer Science

Technical Report #777, University Of Wisconsin-Madison, 1988.

[Re 89] Reps, T., On the Algebraic Properties of Program Integration, Computer Sciences

Technical Report #856, University of Wisconsin at Madison, June 1989.

[Si 92] Silverberg, I., SOURCE FILE MANAGEMENT WITH SCCS, Prentice Hall,

Englewood Cliffs, NJ, 1992.

[Ta 89] Tanik, M. and Yeh, R., "Rapid Prototyping in Software Development", Computer,

vol. 22, pp. 9-10, May 1989.

[Ti 82] Tichy, W.,"Design, Implementation, and Evaluation of a Revision Control System," in

Proceedings of the 6th International Conference on Software Engineering, IEEE,

Tokyo, Sept. 1982.

[We 84] Weiser, M., "Program Slicing", IEEE Transactions on Software Engineering SE-

10,4(July 1984), 352-357.

15

www.manaraa.com

DISTRIBUTION LIST

Defense Technical Information Center 2

Cameron Station

Alexandria, VA 22314

Director of Research Administration, Code 08 1

Naval Postgraduate School

Monterey, CA 93943

Library, Code 52 2

Naval Postgraduate School

Monterey, CA 93943

CPT David A. Dampier, USA 10

Computer Science Department, Code CS
Naval Postgraduate School

Monterey, CA 93943

Dr. Luqi 10

Computer Science Department, Code CS
Naval Postgraduate School

Monterey, CA 93943

Dr. Valdis Berzins 1

Computer Science Department, Code CS
Naval Postgraduate School

Monterey, CA 93943

Dr. Mantak Shing 1

Computer Science Department, Code CS
Naval Postgraduate School

Monterey, CA 93943

Dr. Craig Rasmussen 1

Mathematics Department, Code MA
Naval Postgraduate School

Monterey, CA 93943

Dr. Dan Dolk 1

Administrative Science Department, Code AS
Naval Postgraduate School

Monterey, CA 93943

16

www.manaraa.com

www.manaraa.com

www.manaraa.com

DUDLEY KNOX LIBRARY

3 2768 00333291 7

